精校书屋

手机浏览器扫描二维码访问

第二百九十八章 卡塔朗数组合(第1页)

卡塔朗有一天去剧场排队,看到售票处因为没有找零的钱而跟顾客发生了冲突。

很多顾客都抱怨为什么剧场售票处没有足够的零钱,而剧场售票处的人也发现大家都用大整钱。

卡塔朗在想,不见所有的人用整钱,只是没有足够零钱的人排队排在前头,导致零钱被找光而发生了断供。

卡塔朗在想:“如果带零钱的人全部在前面排队,那么问题一定好解决。”

“不见得所有有零钱的人一定在前方排队,而是有一部分人有零钱的人在前面即可,但是有零钱的人是多少个呢?”

卡塔朗在假设,售票窗口前有2n个人排队买票,每张门票定价5角,每人限购一张。这些人中,只带一张5角人民币的与只带一张1元人民币的各有n人。

开始售票时,售票窗口没有角票可以找零。试问:大家都能顺利买票,售票员始终没有找不出零钱困扰的排队方法共有多少种?

卡塔朗开始思考用0代表身边带5角钱的人,1代表带1元钱的人,则本问题即可变成:有n个0和n个1,问有多少种排列方法,使排成的0、1序列里,任意前i(i可从1变到2n)个数字中,0的个数总不少于1的个数,此性质称为前束性质。

卡塔朗开始画图,发现把0看作向右走一步,把1看作向上走一步,则很明显,n个0和n个1所组成的序列将和图中从原点(0,0)到点(n,n)的递增路径是一一对应的。于是,我们只要计算路径的条数就行了。

很快卡塔朗找到了一个公式计算排队的方法,如果是有n个5角和n个1元的人的排队,则有(2n)!(n!(n+1)!)个办法。

如果是有1个人排队是1个办法,2个人排队则是1个办法,3个人排队是2个办法。此后的4、5、6、7、8、9、10个人排队分别有5,14,42,132,429,1430,4862种办法。

卡塔朗数是一个组合数,一些组合计数问题可以归结为解下列形式的递归关系:un=u1un-1+u2un-2+…+un-1u1,n≥2,且u1=1,它的解un称为卡塔朗数。

一般认为这种数是由比利时数学家卡塔朗在1838年首先提出的,但后来有人指出,实际上大数学家欧拉早在1758年就已认识到它了。

我国内蒙古师范大学罗见今副教授以大量的史料论证,所谓“卡塔朗数”的首创者其实并非欧洲人,而是我国清朝的蒙古族学者明安图(1692~1763)。他的发现早于欧拉,比卡塔朗的发现,几乎早了一百年。

喜欢数学心请大家收藏:()数学心

至尊战皇  摊牌了,我爹是绝顶高手!  永恒大陆之命运  暗无  农夫是概念神?三叶草了解一下!  玄灵界都知道我柔弱可怜但能打  我一枪一剑杀穿大陆  哦豁!虐文炮灰不干了!  译文欣赏:博伽瓦谭  新人驾到  宗门全是美强惨,小师妹是真疯批  混迹娱乐圈的日子  在下潘凤,字无双  国运:拥有多重身份的我很合理吧  穿成商户女摆烂,竟然还要逃难!  大明:开局气疯朱元璋,死不登基  我的徒弟不对劲  穿到八零,我自带锦鲤系统!  重生在宝可梦,我的后台超硬  快穿之炮灰得偿所愿  

热门小说推荐
史上最强赘婿

史上最强赘婿

已完本穿越异世成为财主家的小白脸赘婿,因太废物被赶出来。于是他发奋图强,找一个更有权有势绝美高贵的豪门千金做了上门女婿。练武是不可能练武的,这辈子都不可能练武,只能靠吃软饭才能维持生活!我要把老婆培养成天下第一高手,谁敢惹我就让我娘子打死你!...

发个微信去天庭

发个微信去天庭

当秦奋手机微信摇出了天庭朋友圈,他发现自己的人生变了,但天庭的变化更惊悚。想要金点子,行,拿东西来换,我不挑食。超市,串串香,等一系列熟悉的东西对原有的天庭造成了冲击。秦奋看着天庭的物产,发现自己似乎要发了。种田,数钱,好多事要做。我是先吃蟠桃呢,还是九转金丹。签已过,人品嘛,我很有节操可以吗?求点求收求票票,求包...

恋上美女总裁

恋上美女总裁

什么?要我和美女总裁搞好关系?当然可以!李迪贱笑一声关系就是搞出来的嘛!当兵王之王重回花都,冷艳总裁,傲娇萝莉,清纯助理,火辣警花,群美环绕!花都,我为王!...

我的极品老婆们(都市特种兵)

我的极品老婆们(都市特种兵)

一个被部队开除军籍的特种兵回到了都市,看他如何在充满诱惑的都市里翻云覆雨...

快穿:炮灰打脸攻略

快穿:炮灰打脸攻略

炮灰是什么?雪兰告诉你,炮灰是用来打别人脸的。凭什么炮灰就要为男女主的感情添砖加瓦,凭什么炮灰就要任人践踏?凭什么炮灰就要为男女主献上膝盖?凭什么炮灰就要成为垫脚石?炮灰不哭,站起来撸!本文男女主身心干净,秉持着宠宠宠的打脸原则,男主始终是一个人哦!...

每日热搜小说推荐